Under Pressure: Security of Caesar Candidates beyond their Guarantees

نویسندگان

  • Serge Vaudenay
  • Damian Vizár
چکیده

The Competition for Authenticated Encryption: Security, Applicability and Robustness (CAESAR) has as its official goal to “identify a portfolio of authenticated ciphers that offer advantages over AES-GCM and are suitable for widespread adoption.” Each of the 15 candidate schemes competing in the currently ongoing 3rd round of CAESAR must clearly declare its security claims, i.a. whether or not it can tolerate nonce misuse, and what is the maximal data complexity for which security is guaranteed. These claims appear to be valid for all 15 candidates. Interpreting “Robustness” in CAESAR as the ability to mitigate damage even if security guarantees are void, we describe attacks with birthday complexity or beyond, and/or with nonce reuse for each of the 15 candidates. We then sort the candidates into classes depending on how powerful does an attacker need to be to mount (semi-)universal forgeries, decryption attacks, or key recoveries. Rather than invalidating the security claims of any of the candidates, our results provide an additional criterion for evaluating the security that candidates deliver, which can be useful for e.g. breaking ties in the final CAESAR discussions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryptanalysis of some first round CAESAR candidates

ΑΕS _ CMCCv₁, ΑVΑLΑNCHEv₁, CLΟCv₁, and SILCv₁ are four candidates of the first round of CAESAR. CLΟCv₁ is presented in FSE 2014 and SILCv₁ is designed upon it with the aim of optimizing the hardware implementation cost. In this paper, structural weaknesses of these candidates are studied. We present distinguishing attacks against ΑES  _ CMCCv₁ with the complexity of two queries and the success ...

متن کامل

Avalanche Effect in Improperly Initialized CAESAR Candidates

Cryptoprimitives rely on thorough theoretical background, but often lack basic usability features making them prone to unintentional misuse by developers. We argue that this is true even for the state-of-the-art designs. Analyzing 52 candidates of the current CAESAR competition has shown none of them have an avalanche effect in authentication tag strong enough to work properly when partially mi...

متن کامل

General classification of the authenticated encryption schemes for the CAESAR competition

An Authenticated encryption scheme is a scheme which provides privacy and integrity by using a secret key. In 2013, CAESAR (the “Competition for Authenticated Encryption: Security, Applicability, and Robustness”) was co-founded by NIST and Dan Bernstein with the aim of finding authenticated encryption schemes that offer advantages over AES-GCM and are suitable for widespread adoption. The first...

متن کامل

Note on the Robustness of CAESAR Candidates

Authenticated ciphers rely on the uniqueness of the nonces to meet their security goals. In this work, we investigate the implications of reusing nonces for three third-round candidates of the ongoing CAESAR competition, namely Tiaoxin, AEGIS and MORUS. We show that an attacker that is able to force nonces to be reused can reduce the security of the ciphers with results ranging from full key-re...

متن کامل

Software Benchmarking of the 2nd round CAESAR Candidates

Abstract. The software performance of cryptographic schemes is an important factor in the decision to include such a scheme in real-world protocols like TLS, SSH or IPsec. In this paper, we develop a benchmarking framework to perform software performance measurements on authenticated encryption schemes. In particular, we apply our framework to independently benchmark the 29 remaining 2nd round ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017